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Abstract. The aim of this paper is to present a new design for a

pseudorandom number generator (PRNG) that is cryptographically se-

cure, passes all of the usual statistical tests referenced in the literature

and hence generates high quality random sequences, that is compact

and easy to implement in practice, of portable design and offering

reasonable execution times. Our procedure achieves those objectives

through the use of a sequence of modular exponentiations followed by

the application of Feistel-like boxes that mix up bits using a nonlin-

ear function. The results of extensive statistical tests on sequences of

about 240 bits in size generated by our algorithm are also presented.

1. Introduction

A pseudorandom number generator (PRNG) is a polynomial time com-
putable function f that maps a short random string x into a long one f(x)
that appears to be random (patternless) to any external observer. In other
words, the output sequence of a PRNG should be indistinguishable from a
truly random sequence for any polynomial-time algorithm. In turn, a se-
quence is truly random if it is the realization of a Bernoulli process with
success probability equal to 1/2. The output of a PRNG can be therefore
seen as a finite sequence of bits, such that each bit has to be independently
generated with equal probability of being a 0 or a 1. See, amongst oth-
ers, chapter 5 in [1]. The term pseudorandom is often used because such
sequences are generated by means of deterministic algorithms.
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The generation of random sequences is an essential ingredient for many
scientific applications (for example, computer simulations, statistical sam-
pling, stochastic optimization and cryptography, only to cite a few). There
is a marked tendency amongst practitioners to focus on the speed at which
random bits can be generated rather than on the true randomness of those
bits. Still, there are many situations where the quality of generated random
numbers has a more direct, and likely irreversible, impact on the system or
processes to which they are applied. One such case are cryptographic sys-
tems, because the quality of such random bits determines how prone those
systems are to a successful attack.

At this stage, the notion of unpredictability comes into play, meaning that
a value should be very difficult to guess by an attacker. It has two sides to it:
on the one hand, the knowledge of the first k elements of a sequence should
make it infeasible to predict what the k+1 element in that sequence would
be with probability greater than 1/2 (known as forward unpredictability or
next-bit test; on the other, it should also be impossible to determine the seed
used by an algorithm from the knowledge of any sequence of bits generated
by it (or backward unpredictability). But, if all the practitioner has at hand
is a deterministic algorithm and digital hardware, generating a true random
sequence becomes a hard problem.

Perhaps the obvious choice would be to use one (or ideally, several) statis-
tical test(s) to determine whether a random sequence generated by a com-
puter algorithm is as random as it could possibly be, given it is generated
by a finite-state machine. Many competing protocols (a structured group of
tests, or a battery as they are often called) have been so far designed, that
in addition are also freely available. The suites most frequently referenced
in the literature are outlined below, together with the respective links and
in no particular order of preference (all URLs are live as of March 2022).

• NIST SP 800-22 Rev. 1a
Link: https://bit.ly/2SabnGS

• TestU01 by P. L’Ecuyer and R. Simard
Link: https://bit.ly/2RORndG

• Practically Random, popularly known as PractRand
Link: https://bit.ly/2S957Pu

• Random Bit Generators Tester or RaBiGeTe
Link: https://bit.ly/2uYpGGk

• Diehard by George Marsaglia
Link: https://bit.ly/2UsVwWJ

• DieHarder by Robert Brown, a cleaned up and enhanced version of
Marsaglia’s Diehard
Link: https://bit.ly/2On5O6C

https://bit.ly/2SabnGS
https://bit.ly/2RORndG
https://bit.ly/2S957Pu
https://bit.ly/2uYpGGk
https://bit.ly/2UsVwWJ
https://bit.ly/2On5O6C
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Unfortunately, none of those tests can really prove that a sequence is truly
random. Why? Because it is rather simple to generate bits that could pass
statistical tests for randomness and yet are also perfectly predictable. This
can be seen through a trivial, almost absurd example: a string made of
N repetitions of the number sequence 0123456789. Intuitively, in a random
sequence the digits 0 to 9 should appear with approximately equal frequency;
in other words, the underlying distribution of digits should be approximately
U (0, 9). It is easy to see this condition holds (as a sequence generated in
this way has N 0’s, N 1’s,. . . , N 9’s) yet it can be also easily argued that
such sequence is perfectly predictable. This happens because the generated
sequence uses a low entropy source; or to be more precise, this particular
statistical check for randomness is completely blind to the source of entropy
used to generate the sequence.

The reader might now be tempted to ask the following question: how
can it be guaranteed that a sequence is both patternless and unpredictable?
An answer was proposed by A. Kolmogorov, G. Chaitin and R. Solomonoff,
who independently reasoned that any sequence computed in a finite state
machine cannot be truly random in the sense of the theoretical definitions
of randomness [as explained, for instance, in [2]]. On that basis, a defini-
tion (now widely known as Kolmogoroff complexity) has been proposed: a
sequence (a series of numbers, symbols or both) is random if the smallest
algorithm K(x) capable of specifying it to a computer has about the same
number of bits |x| of information as the series x itself. [see [3]]

Following this definition, sequences should not be considered random
when K (x) ≪ x, that is, when an algorithm K can be described (in other
words, written) using substantially fewer bits than the sequence it generates
as output. In other words, to be considered as random a sequence must be
incompressible. But, once again, there is a catch: Kolmogorov complexity
cannot be computed. Why? Because one can never be completely sure to
have found the shortest (computer) program capable of describing a string
of length x. Despite this practical inconvenience the principle is still con-
ceptually very relevant.

The preceding discussion simply highlights the importance of understand-
ing that passing any battery of statistical tests is simply not enough. The
fact is that the majority of generators shown in [6] including, amongst them,
the popular Mersenne Twister (the standard, and most widely used ver-
sion, is MT19937, 32-bit) fail some statistical tests of randomness, at least
when examined using the protocols enumerated above, and are unsuitable
for cryptographic applications straight out of the box. Hence Matsumoto
and Nishimura, authors of the Mersenne algorithm, explicitly suggest in
their original paper [4] to include hashings as a fool-proof mechanism to
make their generator cryptographically secure. It should also not be too



4 DESIGN AND IMPLEMENTATION OF A NOVEL CSPRG

difficult to note that a hashing routine can be easily added as the final step
to any PRNG, not just to the Mersenne Twister. Hashing functions might
be quite useful for this task, however, in the end they just serve to hide
weaknesses that might be otherwise present.

Taking all of the above into account, our aim was to develop a PRNG
that is (a) statistically sound; and (b) relies on the intractability of a
number-theoretic problem to provide cryptographic security. What is known
as a cryptographically secure pseudorandom number generator (abreviated
CSPRNG).

2. Preliminary considerations

There are many important papers in this specific field, for instance [13]
and generalizations seeking to extract bits from different pseudorandom
sources. Several authors have proposed using modular exponentiations as a
mechanism to generate pseudorandom numbers, like the Blum-Micali algo-
rithm [14] which extracts one bit per iteration. Despite being very important
theoretical contributions, all share a major drawback: they are very slow for
practical applications, even if one considers increasing the number of output
bits as in [15].

Bearing all of this in mind, we found [5] of particular interest because
it presents several remarkable (and rather easy to implement) ideas. Our
approach explored the possibilities of using consecutive modular exponen-
tiations, both in simple and multiple precision. Soon it became clear that
by simply using only modular exponentiations some undesirable statistical
problems persisted. Recalling the Feistel cipher that was used in the DES
(Data Encryption Standard), although in DES with a very poor nonlinear
function [refer to [1] for a detailed discussion], we designed a generalized
version, based on a different nonlinear function to generate the final output
after each iteration (see Algorithm 1 below).

3. The proposed algorithm

We now provide some preliminary comments regarding our design. For
any given seed, v = 1, . . . , V initial safe primes pv ∈ P are either retrieved
from a pre-calculated table (storing, for example, one million safe primes)
or generated as needed. In practical applications, our advice is for V ≥ 4.
Recall that safe primes are primes p > 2 such that (p− 1)/2 is also a prime.

When using a table of safe primes, indices refer to a subset of that table.
If the safe primes are otherwise generated with each run, we propose to



DESIGN AND IMPLEMENTATION OF A NOVEL CSPRG 5

compute them within a certain interval, not necessarily arbitrary. Those
primes change throughout the number generation process.

The generators for Z∗
p, if required, can be fixed or calculated according to

the following results [see [16]].

• If p ≥ 7 is a safe prime, then g = p− ⌊
√

(p)⌋2 is a generator.

• If p ≥ 7 is a safe prime, for every integer z that satisfies the inequalities
2 ≤ z ≤ p− 2, g = (p− z2) mod p is a generator.

In line 15 of Algorithm 1 note that t has to be set bearing in mind the
number of hard bits of the one-way function in a Blum-Micali scheme. Here,
as the primes pi0 , . . . , pis−1 are intended to be small and (in accordance with
the discussion in the next section) we only regard gx mod (q) as the one-
way function and not the composition of the s exponentiations beginning in
line 11 . So the same considerations about hard bits in [15] apply here and
we can take t = log q− k. Also, w1 in Algorithm 1 and w2 in Algorithm 2

are two integers such that 0 < w1, w2 < p.

Our PRNG can therefore be seen as an application from {0, 1}ℓ to {0, 1}L
that maps a bit string w composed by a seed 0 ≤ x ≤ 232 and a set of indexes
i0, . . . , is−1 with 0 ≤ ij ≤ |P| − 1 to a bit string v of length L. Hence, if
|P| = 2r then |w| ≤ ℓ = k + sr and L = k(m− 1)MR (we choose MR = 211

and note that z1 in line 17 is not used to produce the output).

Concerning the change of base, the simplest option is to use an itera-
tion counter. There are, of course, more sophisticated alternatives, such as
chaotic functions, non-linear mappings or oscillators (even if based on some
form of deterministic input). In practice, we have nevertheless found that
an iteration counter is enough to deliver robust sequences.

Important remark − The word randomly on line 7 in Algorithm 1 can
be made precise by replacing it with the following:

• Do the steps from 9 to 16 .

• Let ij ← f(zj , pis−1) for j = 0, . . . , s− 1.

in order to allow the s indexes to be obtained by the same process that
generates the random values.

Finally, the exponents e1 and e2 are suitably chosen to make the non-linear
function in line 10 of Algorithm 1 different to the non-linear function in
Algorithm 2. The binary representation of the exponents have only two 1’s
allowing for a fast evaluation of the modular exponentiation.
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Algorithm 1 PRNG(n, x0, {i0, . . . , is−1}, s)
REQUIRE (as parameters) :

MR = max number of elements generated for a subset of indexes.
nrounds = the number of Feistel-like rounds.
q = a big safe prime (in practice, big implies a prime ≥ 1024 bits).
g = a generator of Z∗

q .
P = a set of safe primes of size k in bits (where k ≥32).
n = the number of random elements to generate.
x0 = an initial element.
{i0, . . . , is−1} ⊂ {0, . . . , |P| − 1} = a set of indexes.

1: Let t← log2 q − k.
2: p a safe prime of length in bits greater than k, a a generator of Z∗

p

3: e1 ← 17, e2 ← 9
4: i← 0
5: while i < n do
6: if i > 0 and i mod MR ≡ 0 then
7: Obtain randomly s indexes {i0, . . . , is−1} ⊂ {0, . . . , |P| − 1}.
8: end if
9: w1 ← aw1 mod p.

10: x0 ← x0 + w1 mod pi0
11: for j = 1, . . . , s− 2 do
12: xj ← xe1j−1 mod pij
13: end for
14: x← xs−3|xs−2.{The bar ”|” is the bit concatenation operator}
15: Discard the first bit of gx mod q and let z be the t least significant

bits that remains.
16: Let z1, . . . , zm be integers of length k such that z = z1| . . . |zm.
17: x0 ← f(z1, pis−1)
18: for j = 2, . . . ,m do
19: yi ← f(zj , pis−1)
20: i← i+ 1.
21: end for
22: end while
23: return {yi}ni=1

4. Security of the PRNG

Let P be a set of safe primes, as described before. The seed space is
given by the size of the primes and the initial value x0. If 2

r = |P| and the
elements of P are of k bits of size, then the key length is equal to 2k+sr.
In order to achieve a complexity equivalent to a key length of 128 bits, for
k = 32 and since r = 21 (because there are around 221safe primes of 32 bits)
the number of primes and indexes must be at least s = 6.
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Algorithm 2 Feistel-like box iterations f(x, n)

1: r0 ← x[k/2 + 1, k] {x[i, k] are the bits i, i+ 1, . . . , k of x}
2: l0 ← x[0, k/2]
3: for i = 1, . . . , nrounds do
4: l1 ← r0
5: w2 ← aw2 mod p
6: x← (w2 + (r0 ⊕ l0))

e2 mod n
7: x← (l0 ⊕ x)
8: r1 ← x[0, k/2]
9: x← l1|r1

10: l0 ← l1, r0 ← r1
11: end for
12: return x

Shifting our focus on cryptographic security and for the sake of com-
pleteness, it is useful to recall at this stage the Discrete Logarithm Problem
(hereafter DLP).

Discrete Logarithm Problem − Given g, z, n ∈ Z find x such that gx ≡ z
mod q if such an x exists.

It is important to note here that the primes pi0 , . . . , pis−1 remain hidden
to an external observer. Even assuming that an attacker is able to extract
them by means of cryptoanalysis, line 15 in Algorithm 1 generates a series
of output bits that are simultaneously hard with respect to the modular
exponentiation gx mod q. Consequently, predicting those bits is at least as
hard as solving the DLP for those numbers.

The procedures that attempt to solve the DLP problem can be classified
into different categories. There are algorithms for general groups without
special characteristics like the Baby-step Giant-step algorithm [according to
[7] due originally to D. Shanks]; Pollard’s rho factoring algorithm [8]; meth-
ods for finite groups whose orders have no large prime factors as Pohlig-
Hellman’s [9]; and the subexponential algorithms like Adleman’s index cal-
culus, that use the Chinese Remainder Theorem [10] and Gordon’s Number
Field Sieve.

We focus on the case when n is a prime number, and all those algorithms
share the fact that complexity increases if n−1 has large factors. This lends
support to the use of safe primes, because p − 1 has a factor of order p.
To have any chance at solving the DLP problem, an attacker should at a
minimum know both the prime and the generator being used.

4.1. Security bounds. Let us denote by RG the PRG given in [11] but
rewrite the procedure offered to generate random bits. Let p be a strong
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prime of n bits and g a generator of the group Z∗
p. Let t = n− c = 2l where

c is a quantity that grows faster than log2 n; that is, c = ω(log2 n) and as
usual we take c = 128 for a 1024 bit prime p.

Algorithm 3 RG generator

Require: x0 ∈ Zp−1 as seed, n > 0 (number of random words to output).
for i = 1, . . . , n do
Let ĝ ← gt mod p
Let b1 be the first bit of xi−1

Let xi = ĝxi−1div tgb1

Let ri be the t− 1 least significant bits of xi after discharging the first
(left) bit.

end for
Output r1, . . . , rn

Our generator uses RG as a subroutine, as can be easily seen in line 15 of
1. We will prove here that, actually, this RG generator provides an upper
bound of the security of our PRG. The proof is a mild reduction strategy
that builds an adversary for RG from an adversary to our generator.

In passing, note that some minor calculations are needed to map line 15 of
our Algorithm to the RG. Those calculations are polynomially bounded in
the length of n, meaning that the map between line 15 of our algorithm and
the RG is a polynomial map. Therefore, the operations needed to compute
line 15 of our generator (using RG as a subroutine) are bounded by p(log n)
for some polynomial p. Details are given in the Appendix.

We recall here the notion of a secure pseudo-random function for conve-
nience. A pseudo-random function (or PRF for short) is a family of map-
pings from some space X to another set Y. The members of the family can
be indexed by a set of keys K, so, given k ∈ K the elements fk of the family
can be written as F (k, ·), and the entire family can be defined as

(1) PRF = {F (k, ·) : X → Y | k ∈ K}

(note that X could be equal to Y although that does not imply that both
functions are permutations). Usually, the set of all functions from X to Y
is written as Funcs[X ,Y] so a PRF is a (special) subset of Funcs[X ,Y].

In turn, a PRF is deemed secure if there is no adversary that can tell
the difference between F (k, ·) and any random function in Funcs[X ,Y] pro-
vided, of course, that k ∈ K is randomly chosen. We will not provide a more
formal definition, to keep with the pace of the presentation; the interested



DESIGN AND IMPLEMENTATION OF A NOVEL CSPRG 9

reader can look at [12], Definition 4.1.1, which is the one that we will use in
this paper.

The advantage of an adversary A when differentiating between the fami-
lies F and Funcs[X ,Y] after evaluating Q elements of its choice is written
as PRFadv[A, F ]. We say that the PRF F is secure if that advantage is
negligible.

By strengthening the restrictions under which and adversary and its chal-
lenger interact, we can relax the conditions over the PRF. Hence, if an
adversary is only allowed to query random points in the domain of the
PRF family then the PRF is weakly-secure when such advantage, written
as PRFadvweak[A, F ], is negligible.

An important point to note is that a secure PRF is also a weakly-secure
PRF, however the reverse implication does not generally hold. In practice,
finding a weakly-secure PRF is supposed to be far easier than finding a
secure PRF.

The family of functions that algorithm 2 represents, denoted by

(2) {f(p, ·) : {0, 1}k → {0, 1}k | p asafeprime ≤ 2k}

is therefore a PRF. Moreover, our PRG design does not rely on this partic-
ular function but only on a property of this function, which we use in step
17 of 1. With all of this in mind let’s now state the following

Theorem 1. If the RG generator is secure and the family of functions f is
secure, then the PRG called G given by 1 is secure.

Important remark − This Theorem relies on the fact that for every
polynomial-time adversary A to G there exists an adversary B to the RG
and an adversary B′ to the PRF f which are elementary wrappers around
A, such that

PRGadv[A, G] ≤ PRGadv[B, RG] + PRFadvweak[B′, f ]

We now proceed by building our proof using sequence of games describing
the interaction between a challenger Ch and the adversary A.

Proof. Let Game 0 be defined by the following sequence of steps:

(1) The challenger receives x0 from A.
(2) The challenger runs one round of the generator (the lines 9 to 21 of

Algorithm 1) with y1, . . . , ym as the result.
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(3) The challenger sends y1, . . . , ym to A.
(4) A outputs one bit b.

In turn, Game 1 proceeds as follows:

(1) The challenger receives x0 from A.
(2) The challenger sets r1, . . . , rm as random elements of {0, 1}k.
(3) The challenger runs one round of the generator (lines 9 to 21 of

Algorithm 1). For i = 1, . . . ,m it replaces zi with ri in line 16. Let
y1, . . . , ym be the result.

(4) The challenger sends y1, . . . , ym to A.
(5) A outputs one bit b.

Finally, Game 2 evolves according to the following sequence:

(1) The challenger receives x0 from A.
(2) The challenger sets r1, . . . , rm as random elements of {0, 1}k.
(3) The challenger runs one round of the generator (the lines 9 to 21 of

Algorithm 1). Let y1, . . . , ym be the result.
(4) The challenger sends r1, . . . , rm to A (it replaces yi with ri).
(5) A outputs one bit b.

Let Wi be the event where A answers 1 in Game i. It becomes clear that

(3) PRGadv[A, G] = |Pr[W0]− Pr[W2]|

and that the above equation can be rewritten as

(4) PRGadv[A, G] = |Pr[W0]− Pr[W1] + Pr[W1]− Pr[W2]|

from where the upper bound

(5) PRGadv[A, G] ≤ |Pr[W0]− Pr[W1]|+ |Pr[W1]− Pr[W2]|

follows easily.

Let A be a polynomial-time adversary to G, and B be a procedure that
acts as a challenger to A and as an adversary to RG. It follows the sequence
given below:

(1) Receives x0 from A.
(2) Runs Algorithm 1 from lines 9 to 14.
(3) Queries the RG challenger using x as seed.
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(4) Upon receiving z′ from the challenger, generates z ← z′ and contin-
ues with Algorithm 1 from line 15.

(5) Let y1, . . . , ym be the result. Send y1, . . . , ym to A.
(6) Output whatever A outputs.

In this scenario, it can be seen that

(6) PRGadv[B, RG] = |Pr[W0]− Pr[W1]|

By the same token, let B′ be an adversary to the PRF f acting as a
challenger to A. Now B′ runs the following sequence of steps:

(1) Receives x0 from A.
(2) Runs Algorithm 1 from lines 9 to 16.
(3) Makes m queries to the PRF challenger with z1, . . . , zm.
(4) Upon receiving y1, . . . , ym from the challenger, send y1, . . . , ym to A.
(5) Output whatever A outputs.

As a result, we have that

(7) PRFadv[B′, f ] = |Pr[W1]− Pr[W2]|

Moreover, since B′ cannot control the sequence z1, . . . , zm sent to the chal-
lenger, the above equation can be made even tighter. In fact,

(8) PRFadvweak[B′, f ] = |Pr[W1]− Pr[W2]|.

The proof then follows by (5), (6) and (8).

□

4.2. Stretch bounds. In addition to the above security bound, we will also
prove here that our generator can extract more bits than the exponential
generator given in [11] and still remain secure, provided that some conditions
on the Feistel-like function hold.

Suppose that we stretch our output by one word, that is, in line 15 of
Algorithm 1 we keep the t+k least significant bits. Let G∗ be that generator.
Our main result is that the stretch keeps the generator safe provided that
f is a secure PRF even when the adversary has access to an oracle for
computing any member of f at random m = t/k points (except, of course,
the challenge value).
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To keep the notation clear, let us write as PRFadv∗[A, f ] the PRF ad-
vantage that an adversary A has over f when having access to an oracle for
f that allows it to make a (polynomially bounded) number of queries.

Theorem 2. If the RG PRBG (pseudorandom bit generator) is secure and
f is a secure PRF, even in the existence of an oracle for f the PRBG given
in Algorithm 1, where t is replaced by t+ k, is secure.

Important remark − It is not difficult to note here that for any polynomial-
time adversary A able to break the PRBG, there are also polynomial-time
adversaries that are elementary wrappers around A, namely: an adversary
B to the RG; an adversary B′ to the PRF f that has access to an oracle for
f with at most m = t/k queries; and an adversary B′′ to the PRF f that
makes at most m+ 1 queries, such that

PRGadv[A, G∗] ≤ PRFadv∗[B′, f ] + PRFadv[B′′, f ] + PRGadv[B, RG]

As with the previous Theorem, we resort to a sequence of games to provide
a formal proof.

Proof. Let Game 0 be the following interaction:

(1) The challenger runs one round of the extended generator (lines 9 to
21 of Algorithm 1 with t replaced by t+ k) with y1, . . . , ym, ym+1 as
the result.

(2) The challenger sends y1, . . . , ym, ym+1 to A.
(3) A outputs one bit b.

In a similar way, define Game 1 as follows:

(1) The challenger sets r as a random element of {0, 1}k.
(2) The challenger runs one round of the extended generator (lines 9 to

21 of Algorithm 1 with t replaced by t + k) and in line 17 replaces
zm+1 with r, then continues with the algorithm. Let y1, . . . , ym, ym+1

be the result.
(3) The challenger sends y1, . . . , ym, ym+1 to A.
(4) A outputs one bit b.

Also, define Game 2 by the following steps:

(1) The challenger sets r1, . . . , rm, rm+1 as random elements of {0, 1}k.
(2) The challenger runs one round of the extended generator (lines 9 to

21 of Algorithm 1 with t replaced by t + k) but it now replaces zi
with ri in line 16, for i = 1, . . . ,m + 1. Let y1, . . . , ym, ym+1 be the
result.
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(3) The challenger sends y1, . . . , ym, ym+1 to A.
(4) A outputs one bit b.

and assume Game 3 proceeds according to the following sequence:

(1) The challenger sets r1, . . . , rm, rm+1 as random elements of {0, 1}k.
(2) The challenger runs one round of the extended generator (lines 9 to

21 of Algorithm 1 with t replaced by t+ k). Let y1, . . . , ym, ym+1 be
the result.

(3) The challenger sends r1, . . . , rm, rm+1 to A (it replaces yi with ri).
(4) A outputs one bit b.

Let Wi be the event A outputs 1 in Game i. Clearly, the advantage of A
in breaking the PRG G∗ is given by

PRGadv[A, G∗] = |Pr[W0]− Pr[W3]|

However, it is possible to express the right hand side as

PRGadv[A, G∗] = |Pr[W0]−Pr[W1]+Pr[W1]−Pr[W2]+Pr[W2]−Pr[W3]|

and our first bound is easily derived from the triangle inequality

PRGadv[A, G∗] ≤ |Pr[W0]− Pr[W1]|(9)

+ |Pr[W1]− Pr[W2]|(10)

+ |Pr[W2]− Pr[W3]|(11)

We can now provide an upper bound for (9). Let B′ be an adversary to
the PRF used in step 17 of 1. Here, B′acts as a challenger to A by running
the following sequence:

(1) Receives x0 from A.
(2) Runs Algorithm 1 up to line 16 to obtain z1, . . . , zm, zm+1.
(3) Sends z1, . . . , zm as m queries to its PRF oracle O and let y1, . . . , ym

be the response of O.
(4) Sends zm+1 as a query to its (PRF) challenger.
(5) Upon receiving ym+1 from the challenger, let ȳ = y1, . . . , ym, ym+1.

Then, sends ȳ to A.
(6) Output whatever A outputs.

As a result, we have that

(12) PRFadv[B′, f ] = |Pr[W0]− Pr[W1]|
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Furthermore, the second part of the inequality (11) can be bounded by the
advantage that an adversary gains over the RG PRBG.

Let B be an adversary to the RG PRBG that, in turn, acts as a challenger
to A. Hence B runs the following sequence:

(1) Receive x0 from A.
(2) Set r as a random element of {0, 1}k.
(3) Run Algorithm 1 until line 14.
(4) Query to its (PRG) challenger with x as seed.
(5) Upon receiving z′ = z′1, . . . , z

′
m from the challenger, generate z ←

z′ and continue the execution of Algorithm 1 from line 16. Let
y1, . . . , ym be the output.

(6) Send y1, . . . , ym, r to A and output whatever A outputs.

Clearly then,

(13) PRGadv[B, RG] = |Pr[W1]− Pr[W2]|

To conclude, it is easy to build an adversary B′′ to the PRF f that makes
at most m+1 queries to the PRF challenger and uses A as a subroutine, in
such a way that

(14) PRGadv[B′′, f ] = |Pr[W2]− Pr[W3]|

We leave those details to the reader. The main result follows from the
equalities in (12)-(14).

□

5. Tests

We turn now to the statistical testing of sequences obtained using the
CSPRNG described in Algorithm 1 and Algorithm 2. In our initial dis-
cussion we argued that statistical tests, if anything, provide a first line of
defence against non-randomness (in other words, as a means to discard bad
generators) but only that. Let us now try to be more explicit.

Statistical testing comes with several questions attached. For example, is
there a necessary criteria to judge randomness? Not quite, for otherwise only
one battery would be enough, rather than competing sets. Despite some pro-
cedures being included in all the testing suites outlined in the introduction,
such commonality does not seemingly exhaust the set of necessary tests;
they would provide, if anything, a minimal set. But also, is such criteria to
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be considered an absolute metric or one relative to the application at hand?
Should it be the latter, how do we go about ranking different generators?
(It would also require some method for ranking every possible application of
a PRNG, a nearly impossible task.) Speaking of a metric, is there an agreed
or available unit for measuring the adequacy (or quality, depending on the
approach) of a PRNG.

The above questions are an example of the difficulties a practitioner faces
when evaluating the statistical qualities of any PRNG. Our approach has
been to look at two test batteries: the NIST suite by [20] and TestU01
by [21]. For further details the reader is referred to the information and
other materials available through the links outlined in the introduction.
The reason for selecting those batteries was a practical one: concerning the
NIST test, originally developed in the ’90s, is the approved testing protocol
for certification under NIST standards; for that very reason, it has become
the starting point for other testing suites and hence provides an obvious
benchmark. TestU01, first developed in 2007, goes futher and deeper than
the NIST suite, and is nowadays acknowledged as providing the most reliable
testing battery for random sequences.

Going back to the questions about the statistical properties of any PRNG,
they ought to display some basic (or minimal, as stated above) properties.
Those are the following:

• The symbols generated should be, quite obviously, independent of
each other. It is equivalent to say that there should not be serial
correlation between successive symbols in any generated sequence.

• The frequency by which a PRNG generates any symbol should not be
higher than for any other symbol in the defined or assigned output
range. It is equivalent to requiring those numbers to be equiprobable.

• A further property is that of uniformity in the distribution of the
generated symbols, meaning they should be evenly spread (or sym-
metric).

• In addition, any permutations of the symbols generated by a PRNG
should also be equiprobable (as otherwise the generator would be
biased).

• The period of the PRNG, or how long it takes the generator to produce
a sequence identical to the first one it created, should be large. The
question becomes qualifying what large means. In this regard, refer
to the opening paragraph in sub-section 3.1 for the calculation of our
generator complexity. The periodicity of our PRNG as tested is just
above 2158. Bear in mind, however, that periodicity does not equate
to security. Once the period exceeds 264 or 2128 for a 64-bit generator
it becomes completely irrelevant for cryptographic applications.
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It should be noted here that any deterministic machine, such as
a computer, has a number of states bound by its finite memory (as
opposed to Turing Machines that have infinite memory; they still
have a finite number of states, however they are arbitrarily large).
Consequently, any program running on a computer will eventually
return to a state where it has been before. How long would it take
for that to happen (or more precisely, the number of computations
required) is key to determine predicatibilty: if repeating itself takes an
impossibly long time for a PRNG, any sequences it generates would
not be predictable using available (or even future) computing power.

• To start a PRNG a seed is required. From a statistical perspective,
the above listed properties should hold independently of the seed(s)
used to initialize a PRNG.

Statistical testing is used to determine if a sequence, either defined over
the real interval (0, 1) or over the binary set {0, 1}, significantly departs
from a true random realization, and it involves probabilities. Both the NIST
and TestU01 batteries look at the presence of different types of patterns in
sequences generated by PRNG; if any of those patterns are detected, then
the sequence is considered not to be random.

The assumption that a sequence generated by a PRNG is indeed random
becomes the null hypothesis, denoted as H0. Of course, given H0 one faces
two scenarios: firstly, that a truly random sequence is deemed not to be
random (rejectingH0 when it should have been accepted) leading to a Type I
error, or a false positive; secondly, that a non-random sequence is accepted as
random (accepting H0 when the opposite is true) defined as a Type II error,
or a false negative. Type I errors are controlled by setting the significance
level α of the tests. Since H0 is evaluated in terms of probabilities, the
strength of the evidence provided by the data against H0 is given by the
Pvalue ∈ [0, 1] of the test. If Pvalue ≥ α then H0 is accepted; given our null,
it implies that the sequence being tested is random with a confidence level
equal to 1− α.

Should the value of α be set too high, a data sequence that is truly random
faces the possibility of being rejected as such, incurring Type I errors; if set
too low, one might end accepting as random a data sequence that is not
so, hence inducing a bias towards Type II errors. Furthermore, due to the
existence of many potential sources of non-randomness, in this particular
testing scenario Type II errors are more problematic to appraise than Type
I errors.

To avoid accepting as a good generator one that is flawed it is advis-
able to use additional testing procedures, running the t = 1, 2, ..., T tests
in a battery over each sub-sequence, and counting the number of times
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Pvalue,t ≥ α,∀t. Using the ratio Rt = (1/M)
∑

M (Pvalue,t ≥ α) a test t is
considered passed if Rt is greater than 1− α. In addition, and as noted by
[23], under H0 the Pvalue,t statistics across the M sub-sequences should be
uniformly distributed over the (0, 1] interval, so a simple χ2 test or other
non-parametric options (for example, the Kolmogorov-Smirnov test) can be
used in this instance to check for bias.

It is also possible, although in many instances computationally expensive,
to test h runs of size m using different seeds, or changing other parameters.

This meta-approach is equivalent to looking at the results from h (MT )
tests; should testing large m sequences be possible, adding the h dimension
makes it easier to more properly look at each test on their own.

4.1. Materials and methods

We defined as objective to evaluate at least h = 100 runs of our generator,
on sequences of about m = 240 bits in size

(or 235 32-bit integers, hence 235× 32 = 240 bits. Each sequence required
storing just over 137 Gb of data). The algorithm picked skips {w1, w2}
starting from a prime p ∈ P of size on the interval k = [32, 64] to ensure
they are evenly distributed when taken as 32-bit strings; please refer to
Section 3 for details (note that if p < 32 bits and the wk skips are taken as
32-bit strings, it would always be the case that bit 32 is a zero, resulting in
bias).

One of the features of our PRNG design is its reasonable speed. Given the
size of the sequences to be tested and to ensure both the NIST and TestU01
batteries took as little time as possible to complete, our initial focus became
selecting a qsize (size in bits of the safe primes) that reasonably ensured our
PRNG produced sequences showing good statistical qualities, even if such
choice could render an attack on the PRNG feasible The table below shows
the results obtained for sequences of 233 bits against several qsize options.

To test execution times, we took the first safe prime q of the form 2p− 1
with p denoting a prime of u − 1 bits, u = {256, 512, 1024, 2048}. The
average execution time includes, give or take, a 30% overhead due to disk
writes. Table compiled from runs made on an Intel Core i5-8400 running at
2.80 GHz with 16 Mb RAM.

Safe prime qsize Execution time
[in bits] [in seconds]

256 296
512 343
1024 410
2048 538
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Table I: qsize against PRNG execution time

It soon became apparent that safe primes of qsize ≈ 256 bits already pro-
vided robust and consistent outcomes, for speed gains of roughly four hours
per run compared to using (cryptographically safe) primes of at least qsize =
1024. Therefore, we adopted a qsize = 260 bits running the experiments in
a cluster of 12 PCs.

Seven PCs being Intel Core i5-8400 CPU running at 2.80GHz and the
remaining four of them Intel Core i5-4590 CPU running at 3.30GHz, all
with 16 Mb of RAM. One spare PC was used for re-runs. TestU01 using the
Crush battery added about an hour of execution time, including overheads
due to disk writes.

To run TestU01, our algorithm was coded in C++, and compiled (together
with the TestU01 routines and libraries) using gcc 7.4.0 in Ubuntu 18.04.1.
A more versatile Python 3 version of the algorithm has also been coded.

The NIST battery, however, demanded a markedly longer time to com-
plete, hence we only ran 10 experiments simply as confirmatory analysis,
using five sequences already tested using TestU01 and five new ones. Note
the NIST suite is typically used for (and seems prepared to handle) sequences
of size 220 or only slightly longer. Concerning execution times, that might
explain its weaker performance given our testing scenario.

Cluster A Cluster B
PC Id Runs Weak PC Id Runs Weak

1 12 0 17 3 1
2 15 0 21 5 0
3 15 0 22 5 0
4 15 0 23 5 1
5 15 0 Backup PC
14 9 2 PC Id Runs Weak
15 3 0 14 3 0

Table II: TestU01 results for each PC

in our testing clusters

Concerning the test batteries themselves, the NIST suite is currently com-
posed of 15 statistical tests that look at multiple potential sources of non-
randomness in (arbitrarily long) binary sequences. In its 2010 revision, the
NIST removed the Lempel-Ziv Complexity of Sequences (#10 in the battery)
due to a detected bias in the Pvalue of the test.

The Crush battery of TestU01 includes 96 separate tests, and provides
a good template to judge if a PRNG is broken; in fact, the gap between
this battery and BigCrush (160 tests) is rather small, in practical terms,
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if compared to the gap between the Crush battery and competing testing
suites, including the NIST one. It is much more likely to find a PRNG that,
having passed other testing protocols convincingly, fails in at least one of
the tests of the Crush battery, than a PRNG failing a BigCrush test having
otherwise passed under Crush.

4.2. Results

The outcome of TestU01 is summarized in Table II. For h∗ = 105 total
runs using sequences of about m = 240 bits in size, 101 runs showed no
problems and recorded four suspicious results at a significance level of α =
0.001 involving the tests in Table III from TestU01 Crush battery. Note
each Pvalue shows those suspicious results have been marginal (a weakness,
rather than an outright failure) at the set significance level, in addition of
not being systematic.An outright failure implies the Pvalue is outside the[
10−10, 1− 10−10

]
range (meaning too close to either 0 or 1). In our case,

the Pvalue of the tests is quite near or at the set significance level. The fact
they were also isolated results, rather than a repeated outcome, also plays
a role in the evaluation.

Cluster PC Id Test (# and descriptor) Pvalue

A 14 #92 sstring Run 5.0e− 4
A 14 #94 sstring AutoCor 0.9990
B 17 #84 sstring HammingCorr 0.9991
B 23 #80 sstring HammingWeight2 3.8e− 4

Table III: TestU01 suspicious results

Proceeding in the same order as shown above, the description of the tests is
the following (the # identifier for the tests is that in [21], pp. 144-147)

• #92 is simply a version of the runs tests applicable to bit strings.

• #94 checks the autocorrelation between bits of order d.

• #84 also applies a correlation test, but based on the Hamming
weights of successive blocks of L bits.

• #80, finally, examines the proportion of 1’s within non-overlapping
blocks of L bits.

To fully ascertain the situation, we conducted 10 repeats for each sequence
(complete re-runs) using, on every occasion, identical parameterizations to
the ones that led to suspicious outcomes: five runs on the same suspecting
PCs, the other five repeats on any of the remaining PCs picked at random.
No problems were detected in any of the 10 repeat tests. Further investiga-
tion, however, revealed that micro-cuts in the power supply occurred during
the same time intervals the tests in Table III were running; this finding
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is a provable, but not proven, explanation for the suspicious results, as our
inability to subsequently replicate them seem to suggest.

Therefore, upon considering (a) the inability to mimic those results in 10
repeat runs; (b) the detected issues are not systematic; and (c) a possible
external cause linked to those outcomes, it seems appropriate to assume the
four tests as technically passed.

Turning now to the successes, the Pvalue for every test in the Crush battery
positioned itself comfortably in the acceptance region, for the vast majority
of cases. As a last step, we computed Kolmogorov-Smirnov and Anderson-
Darling statistics across the h∗ = 105 runs, assuming, under the null hypoth-
esis (and as previously noted) the Pvalue for each of the tests is uniformly
distributed. In all instances, that H0 was decisively accepted at a α = 0.01
significance.

Concerning the NIST battery, the tests were run on a single PC, showing
no fails and one weakness in the 10 runs processed. As before, the suspicious
result (involving a single, isolated instance of the Non-overlapping Template
Matching test) was very marginal, happening only once across the 10 runs
and hence bearing no practical importance.

6. Conclusions

The focus of this paper has been to present a novel algorithm for the
generation of pseudorandom sequences that is (a) statistically sound; and
(b) provides a high degree of cryptographic security. Concerning the former,
we have relied on the results from the NIST (on a very limited scale) and
the TestU01 Crush battery of tests; TestU01 includes all the procedures in
the NIST suite plus supplementary tests in its Crush battery. On the latter,
the discussion of Section 3 (and in particular sub-section 3.1) provides the-
oretical support to claim our generator is crytographically secure. In that
sense, we have found no cryptoanalytic technique able to break the partic-
ular combination of modular exponentiations and modified Feistel boxes in
Algorithm I and Algorithm II, leaving Brute Force as the only plausible
attack vector.

This possibility is also denied, however, given the computing power nowa-
days available and most likely to become available for quite a long time.

Inevitably, in any CSPRNG design there is a balance to strike between
speed and suitability for cryptographic use. Given the present code imple-
mentation, our algorithm has shown an average speed of 1063 cycles/byte to
get 32-bit random numbers in non-dedicated hardware using 1024-bit safe
primes. Such performance might seem comparatively poor, at first sight,
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compared to other options available; however, the statistical tests performed
on sequences of about 240 bits length have shown no evidence of issues other
than the reported flukes.

Our proposed design therefore compares very well against most publicly
known PRNGs, as they invariably display between one to seven weak re-
sults (and the occasional failure) using the same test batteries and sequence
length as in our experiments; in fact, popular PRNG generators have shown
multiple failures in TestU01 tests using the Crush battery. Of course, the
performance of our generator remains to be seen for sequences in the order
of several Tb in size, or perhaps using a more stringent testing battery (e.g.
BigCrush). That exercise is left for future work.

As a bonus, our design is easily portable. We have coded the Algorithm
I and Algorithm II (together with supporting libraries) in Python 3 and
C++, in the latter case to hardwire our generator in TestU01.

Wrapping up, our expectation is that the scientific community could ben-
efit from a robust, portable and reasonably quick PRNG for most practical
applications, having, at the same time, theoretical cryptographic security
guarantees.

7. Appendix

The reduction is the procedure outlined below.

(1) Let x0 ← x · t.
(2) Let x1 = gtx be the output of the generator for the seed x0 (note

that the first bit of x0 is 0 and that x0 div t = x).
(3) Let x2 ← x1. Repeat the following l times:

(a) Let w1, w2 be the square roots of x2 in Zp

(b) Let x2 ←
{

w
w1 if w1 is a square in Zp.

2 otherwise
(4) Return x2.

All the operations involved above are polynomially bounded, since p is
not just a prime but a strong prime, so p ≡ 3 mod 4 and the square roots of
elements in Zp are easy to find, if they exist, and there are exactly two

(see [26] Corollary 7.1.2). Finally and for the same reason, at most one of
the roots is at the same time a square in Zp because −1 is a quadratic

non-residue of p (see [26], Theorem 5.8.1).
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